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On entropy production for an isolated system 

S. SINIONS 
Queen Mary College, Mile End Road, London El ,  England 
M S .  received 15th May 1970, in revised form 27th July 1970 

Abstract. An extension is developed for an inhomogeneous system of a result 
originally derived for a homogeneous system concerning the sign of successive 
time derivatives of the entropy in the passage to equilibrium. A new micro- 
scopic derivation is given of two macroscopic thermodynamic equations used 
in the treatment. 

1. Introduction 
Consider a general isolated physical system which is not in equilibrium, Then, 

apart from possible conservation laws, probably the only general statement concern- 
ing the passage to equilibrium which has so far been enunciated is that the entropy 
S of the system continually increases; that is, for any time t, 

dS/dt  2 0 (1)  
with the equality sign holding only at equilibrium. In view of this important role 
played by the entropy in characterizing the return to equilibrium it is clearly of interest 
to consider whether anything further can be stated about the time variation of the 
entropy. Now, in Simons (1969) it was shown that for a homogeneous gas whose 
behaviour can be described by the linearized Boltzmann equation, the time variation 
of Boltzmann's H function is such that ( -)ndnH/dtn 2 0 for all integral n, and since 
S = -kH this implies that for such a gas 

(-)"d"S/dt" < 0 (1 < n < CO). (2) 
The general form of the result (2) suggests that it may be of wider application than 
the homogeneous gas case for which it was originally proved, and indeed it may be 
readily shown by a proof similar to that of Simons (1969) that the result holds for the 
relaxation to equilibrium of a homogeneous assembly of electrons or phonons whose 
behaviour can be described by the usual Boltzmann equation. 

The  main purpose of the present paper is to consider to what extent the result (2) 
may be extended to the case of isolated inhomogeneous systems, and in the current 
work we deal with two such systems. The  first is one in which general spatial and 
temporal variations in temperature exist and in which equilibrium is established 
through thermal conduction, while the second involves similar variations in particle 
concentration and equilibrium arises through diffusion. In  both cases we restrict 
ourselves to the situation in which the variations in the relevant physical variable 
(temperature or concentration) are small compared with the equilibrium value of that 
variable for the system. 

Consider dnSldtn for the system. We proceed to show that this may be expressed 
in the form 

d"S/dt" = SYcn)+ S i n )  (3) 
where SV(") (the 'internal' contribution to d"S/dt") is a term involving a volume 
integral throughout the system and Sb(") (the 'boundary' contribution to d"S/dt") 
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is a term involving a surface integral over the boundary surface of the system.? 
We shall give an explicit form for SY(n)  and prove that it is such that 

(-)nS,,(n) < 0 (1 < n < to). (4) 
In  4 2 we deal with the thermal conduction problem and in $ 3  the case of diffu- 

sion. A statistical mechanical derivation of the macroscopic equations employed in 
§ 2 is given in the Appendix for the case of a system in which the usual Boltzmann 
equation is valid. 

In  view of the general form of the result (2) it would seem worthwhile examining 
whether it may be extended to other physical systems-possibly in a modified form 
as in the present paper. 

2. Thermal conduction 
Consider an isolated system with average temperature T o  and let 6'(x,, t )  be the 

amount by which the temperature at position x,( 1 < p < 3) and time t departs from 
To. Then it is known (e.g. Landau and Lifshitz 1959) that 6' satisfies the differential 
equation 

a0 a2e 

%t ax,ax, P Q  - C - = K  (5) 

inside the system. For the rate of entropy production we follow Landau and Lifshitz 
(1959) who show by a macroscopic approach that 

d S  K,, i3T 8T 
d r  ( 6 )  

for a general temperature T(xp, t )  where the volume integral is taken throughout the 
volume V of the system. We are currently considering the case where 181 < To, and 
thus 

d S  1 ae ae 
- = -I Kpq-,dr. 
dt To2 a x p  ux, (7) 

We may note at this stage that the macroscopic derivation of both equations ( 5 )  and 
(7) depends on the usual linear relationship between heat flow and temperature 
gradient applying even when these quantities are time-dependent . For reasons given 
in Appendix I this assumption cannot be strictly true and we therefore give in this 
Appendix an alternative statistical mechanical derivation of these equations. 

We proceed to differentiate equation (7) with respect to time and obtain 

since Kpq  is symmetric, and making use of equation ( 5 )  this gives 

t It  should perhaps be emphasized that Sb(") is completely unrelated to the quantity 
occuring in the theory of non-equilibrium thermodynamics which is conventionally denoted 
by d,S (see for example De Groot and Mazur 1962). 
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Now it follows from the divergence theorem that if A and B are any spatial deriva- 
tives of 8, 

where U is the boundary surface of the system. Hence on identifying A with aejax, 
and B with PB/2s,axs, we obtain from equations (8) and (9) 

d 2 S  2 828 2 ;e a20 
dS,. (10) - = - -fv (K,,-) dT+-J K,,K,,--- ax, ax,ax, 

dt2 To2C ax,ax,, TO2C 0 

On comparing this result with equation ( 3 )  it is clear that 

and that Sv(2) < 0. A further differentiation with respect to time of equation (1 l), 
together with utilization of equations (5), (9) and (3) readily yields 

and since K,, is a positive definite matrix it follows that Sv(3) 
procedure we obtain for even values of n 

0. On repeating this 

2n-1 
S L , ( n ) =  - T O T n  - Iv ( K p q  . . . K,, ---"-) dX, . . . ax, d7 (13 )  

while for odd values of n 

.The result (4) follows immediately. 

3. Particle diffusion 

equation 
In the case of particle diffusion, the particle concentration F(x,,  t) satisfies the 

ZF _ -  - D T 2 F  
at 

where D is the diffusion coefficient. It is shown in Landau and Lifshitz (1959) that 
the rate of entropy production is given by 

_ -  d S  - 8~ /grad FI2 d r  

dt TO 

where /3 is a positive constant. On comparing equations (15) and (16) respectively 
with equations (5) and (7) it is seen that these are equivalent if we identify 8 with 
F, C-lK,, with D6,, and T,-lK,, with /36,,. The previous argument may therefore 
be used to show that result (4) holds for particle diffusion. 
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Appendix 1 
We consider here the derivation of equations ( 5 )  and (7)  based on a statistical 

mechanical formulation, and to simplify the discussion we confine ourselves to the 
case where the energy is transported by phonons so that the only quantity conserved 
in interparticle collisions is the energy. This treatment is of interest since the usual 
macroscopic discussion leading to equations (5) and (6) depends on the assumption 
that the macroscopic relationship-heat flow equals conductivity tensor times 
temperature gradient-remains true even when the quantities involved are time- 
dependent. Now, when these quantities are independent of time the above macro- 
scopic relationship can be readily shown to follow from the linearized time-independ- 
ent Boltzmann equation. But when the latter takes its time-dependent form, the 
presence of an additional time-derivative in the equation (see the third term in 
equation (A3)) means that the above relation between heat flow and temperature 
gradient must require modification to some extent, and a priori it is not clear to what 
degree this will affect equations (5) and (6). The present treatment shows that when 
the distribution function at any point is close to an equilibrium distribution char- 
acterized by some particular temperature, equations ( 5 )  and (6) remain true. 

Iff( k, r ,  t )  is the occupation number at position r at time t for phonons of wave- 
number k, the Boltzmann equation for the phonon assembly takes the form 

T=g) -v .gradf  
at at 

where ?j/at), is the rate of change off due to phonon collisions and v is the phonon 
velocity. We deal with the situation wheref is close to the Bose-Einstein distribution 
F(k, To) characterized by the temperature T o  of the equilibrium region of the 
medium, and let 

where E(k) is the phonon energy and +(k, r, t) measures the deviation from equili- 
brium. For the present situation of small deviations from the equilibrium distribu- 
tion, aflat), may be represented by its linearized form L+ where L is a linear integral 
operator (Ziman 1960) and thus we obtain the Boltzmann equation (Al) in the form 

a+ J44+v .g rad++-  = 0 
at 

where 

In order to develop a systematic solution to this equation of the required form, we 
introduce into the equation a parameter E ,  and then look for a solution in the form of 
a power series in E .  In  order for the solution to be dominated by an equilibrium 
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distribution which can vary in both space and time we express equation (A3) as 

M ~ + E v .  grad(b+E2 (;) = 0 

and the solution in the form 
m 

4 = C E n 4 n *  
n=O 

O n  substituting from equation (A6) into (AS) and equating coefficients of E" to zero 
for n = 0, 1, 2 we obtain 

M+o = 0 ( A 7 )  

Now since energy is the only quantity conserved in phonon collisions, the genera1 
solution of equation (A7) is that 4o is equal to a multiple of E (Simons 1960) and by 
comparison with equation (A2) it is readily shown that this multiple is the excess 
temperature B(r, t )  introduced in $2 .  Thus 

$0 = BE. (A101 
Substituting into equation (A8) we obtain 

and for this to possess a solution the right hand side must be orthogonal to the 
solution F of the adjoint homogeneous equation (Friedmann 1956). From equation 
(A4) it may be shown that the solution of this adjoint equation is 

and the orthogonality condition is then satisfied since E ( - k )  = E ( k )  while 
W( - k )  = - v(k) . t  The solution of equation (-411) is 

(i113) 

and substituting this into equation (A9) gives 

'The condition for this to possess a solution for d2 is that the right hand side should 

p The reason for the c2 multiple of +$/at in equation (AS) should now be apparent, since 
if an E multiple had been introduced, equation (Al l )  would have been supplemented by a 
-E( af?,/at) term on the right hand side, and the orthogonality condition would then only have 

been met if i%/at = 0, which would have precluded any time variation of 8. 
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be orthogonal to I?, and applying this condition gives 

E.o., %F E2 ZF 
as 1 8n3To ZE 

---I~~-'(EE~) dk = - at - -- -dk. (-414) 

By a consideration of the time-independent Boltzmann equation it may be shown 
that the integral on the left hand side is the conductivity tensor Kpq, and since 
- (E/T,)(aF/aE) = ( % F / a T ) ,  the integral on the right hand side is the specific heat 
C. Equation (i114) thus reduces to equation (5). 

T o  evaluate dS/dt  we begin with the statistical mechanical definition of entropy 
for the phonon system 

S = - ($1 11 {flnf- (1 +f) In( 1 +f)} dk d r  

where k is Boltzmann's constant (Landau and Lifshitz 1958). On differentiating 
this with respect to time and making use of equation (-42) with 1f -F;  F ,  it is 
found that since the total energy of the phonons is conserved 

1 ZF a+ d S  
d t  W ! a E  at 

- - + - dk dr .  _ -  

With the help of equation (-43) to eliminate a+/&, we obtain 

d S  1 
dt S i r 3  To3 

___ - - - -- 1 +iW+ dk d7 

since the volume integral in the other term (J( BF/BE)v. 0 d 2  dr )  transforms into a 
surface integral over U which can be shown to be zero to terms of order 2. We 
substitute for +&?+ in the integrand of equation (A16) from equations (AS), (A7), (-48) 
to give 

The  contributions of the terms +ohZ+l and 40:k?+2 to dSldt are zero since 
and thus, making use of equations (A10) and (A13) we obtain to terms of order c2 

= 0 

On identifying the large quantity in parentheses with Kpp and letting E = 1, equa- 
tion ( 5 )  is obtained. 
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